If it's not what You are looking for type in the equation solver your own equation and let us solve it.
82(3^2x-4)-110=557
We move all terms to the left:
82(3^2x-4)-110-(557)=0
We add all the numbers together, and all the variables
82(3^2x-4)-667=0
We multiply parentheses
246x^2-328-667=0
We add all the numbers together, and all the variables
246x^2-995=0
a = 246; b = 0; c = -995;
Δ = b2-4ac
Δ = 02-4·246·(-995)
Δ = 979080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{979080}=\sqrt{4*244770}=\sqrt{4}*\sqrt{244770}=2\sqrt{244770}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{244770}}{2*246}=\frac{0-2\sqrt{244770}}{492} =-\frac{2\sqrt{244770}}{492} =-\frac{\sqrt{244770}}{246} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{244770}}{2*246}=\frac{0+2\sqrt{244770}}{492} =\frac{2\sqrt{244770}}{492} =\frac{\sqrt{244770}}{246} $
| 28=x/5=4 | | 3^3x=17 | | 15+y=45 | | G(x)=8x-14 | | -14=10x-20 | | 2a+a+7a=27 | | 25=2(n+4) | | -3x-5=-9 | | 3x2+2(x2-20)=16-2x2 | | 11=-6x-2 | | y/9=16/36 | | 9-(-2x+3)=2+4 | | h=5-3h | | 4(x/2+1)=6 | | 61+(10x+69)=180 | | 61-(10x+69)=180 | | 20x+40-x^2-2x=121 | | 5x^2-11x-14=-8x | | -18x-5=-13 | | 11x^2-5x+3=x^2-4x | | 2-2t=4- | | 23=41-7(-2-3w) | | 11x2-5x+3=x2-4x | | x^2-11x-106=-4 | | 11=–6x–2 | | X+2=4)x+35 | | 96+(9x+66)=180 | | 17x^2-12x+5=9x^2 | | 96-(9x+66)=180 | | 3x+10=5+4x | | -10(x+2)+113=30+23 | | x+56-28=180 |